desmos

Unit 7.3, Family Resource
Unit 3 Summary

Prior Learning Grade 6 - Area of triangles and quadrilaterals - Evaluating formulas Grade 7 - Proportional relationships	Grade 7, Unit 3 - Circumference of a circle - Area of a circle	Later in Grade 7 Unit 6 - Solve equations	Grade 8 - Volume of cylinders, cones, and spheres

Circumference of a Circle

Circles are shapes made up of all the points that are the same distance away from a center.
Here are some common measurements of a circle.

- The radius goes from the center to the edge of a circle.
- The diameter goes from one edge of a circle to the other and passes through the center.
- The circumference is the distance around the circle.

There is a proportional relationship between the diameter and circumference of a circle.
The constant of proportionality of this relationship is π (pronounced "pie").
Common approximations for π are $3.14, \frac{22}{7}$, and 3.14159 , but none of these are exactly π.

The relationship between the diameter and circumference of a circle is exactly $C=\pi d$.
If $A P$ is 5 inches, then $A B$ is $2 \cdot 5=10$ inches.
The circumference is $C=\pi(10)=10 \pi$ inches, or about 31.4 inches.

desmos

Unit 7.3, Family Resource

Area of a Circle

We can estimate the area of a circle using radius squares.

A little more than 3 radius squares cover any circle, so this circle's area would be a little more than $3 \cdot 4^{2}=48$ square units.

The relationship between the radius and area of a circle is exactly $A=\pi r^{2}$.
The area of the circle above is $\pi(4)^{2}=16 \pi \approx 50.27$ square units.

We can prove that this formula is correct by cutting a circle into rings and rearranging the rings into a triangle.

The height of the triangle is the radius of the circle.
The base of the triangle is its circumference.
The area of the triangle is:

$$
\begin{aligned}
A & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 8 \pi \cdot 4 \\
& =16 \pi \text { square units. }
\end{aligned}
$$

desmos

Unit 7.3, Family Resource

Try This at Home

Circumference of a Circle

1.1 $A P$ is a radius of this circle. List every other radius.
1.2 $E F$ is a diameter of this circle. List every other diameter.

A candle has a diameter of 12 centimeters.
2.1 What is the distance from the edge of the candle to the wick (at the center)?
2.2 Would a ribbon 40 centimeters long wrap around the candle? Explain your thinking.
3. Determine the total perimeter of this figure.

Area of a Circle

A rectangular wooden board, 20 inches wide and 40 inches long, has a circular hole cut out of it.
4.1 If the diameter of the circle is 6 inches, what is the area of the circular hole?
4.2 What is the area of the board after the circle is removed?

desmos

Unit 7.3, Family Resource

5. Determine the total shaded area of this figure.

Solutions:

1.1 $B P, C P, D P, E P, F P$
$1.2 A B, C D$
2.1 6 centimeters. This would be the radius of the circle, which is half of the diameter.
2.2 Yes.

Explanations vary. The distance around the candle is its circumference, which would be $C=\pi(12)=12 \pi \approx 37.7$ centimeters. This means a 40 -centimeter ribbon would wrap around.
3. $4 \pi+10$ units

The perimeter of the outside of the shape is $\frac{3}{4} \cdot \pi \cdot 4=3 \pi$ units plus 8 units for the straight edges. The perimeter of the inside of the shape is 2 units plus $\frac{1}{2} \cdot \pi \cdot 2=\pi$ units.
$(3 \pi+8)+(\pi+2)=4 \pi+10$ units.
$4.1 \pi\left(3^{2}\right)=9 \pi \approx 28.3$ square inches
4.2 $800-36 \pi \approx 686.9$ square inches
5. $2.5 \pi+8$ square units

The area of the large shape is $\frac{3}{4} \cdot \pi \cdot\left(2^{2}\right)=3 \pi$ square units for the part of a circle plus $2 \cdot 4=8$ square units for the area of the rectangle. The area of the hole is $\frac{1}{2} \cdot \pi \cdot\left(1^{2}\right)=0.5 \pi$ square units. $(3 \pi+8)-(0.5 \pi)=2.5 \pi+8$ square units.

